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Synopsis 
The theory of liquid diff usive flow through graded membrane under applied pressure 

difference is developed and demonstrated on four simple models. The grading of the 
membrane, caused by a gradient of chemical composition or physical structure, results in 
a gradient of liquid uptake (hydration) which in turn is reduced by the compacting pres- 
sure existing in the membrane during the permeation experiment. The hydration estab- 
lished in equilibrium between the swelling tendency and compacting pressure determines 
the local permeability. It has different values K+ = K- for opposite flow direction. 
The total membrane permeability (K) ,  however, depends on the current direction only in 
the case that the relative depression of local hydration, and hence of permeability by 
pressure, is not uniform but has a gradient. In  mathematical formulation, the direction- 
ality of membrane requires the local permeability to be an irreducible function of location 
and pressure p ,  continuously increasing or decreasing with r .  T h  permeability of the 
membrane is higher if the driving pressure is applied at the side of the membrane with 
higher relative reduction of hydration and permeability by compacting pressure. 

INTRODUCTION 

Vectorized membranes having a different permeability for flow in the op- 
posite direction may be of value as permeation valves. Such asymmetric 
membranes for permeation of gases and vapors can be constructed, for in- 
stance, from two layers of different films, the permeability constants of 
which exhibit different pressure dependence' or by radiation-initiated graft- 
ing of sorbed polymer during permeation through the film which produces a 
concentration gradient of permeant.2 Recent experiments3 on flow of water 
through membranes of poly(styrene-pyridine) random copolymer with a 
quaternization gradient demonstrated an asymmetric permeability, i.e., a 
nearly 50% larger flow at the same pressure difference if the applied pres- 
sure and quaternization gradient had the same direction. In  the mem- 
branes investigated, the permeability properties of each volume element are 
mainly determined by hydration which increases with quaternization. The 
permeability of the volume element extremely rapidly increases with hydra- 
t i ~ n , ~  so that the membrane with a quaternization gradient exhibits a large 
permeability gradient. On the other hand, the membrane is exposed to a 
compacting pressure which reduces the hydration and hence the permeabil- 
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 it^.^ The gradients of the driving and compacting pressure are exactly 
equal and opposite at every location in the membrane. 

To  our knowledge, there is in the literature no theoretical treatment of 
liquid permeation through such graded membranes under a pressure gra- 
dient taking into account the effect of composition and compaction gradient 
which could be used for explanation and understanding of experimental 
observations. Therefore, in that which follows, a study of some simple 
models is presented, demonstrating separately the role of both factors in 
producing the directional dependence of permeability. It turns out that 
vectorixation occurs only in the case that the pressure dependence of the 
local permeability of the swollen membrane material has a gradient. A 
solvation (hydration) gradient alone, i.e., a t  constant compressibility, does 
not impart directionality to the transport properties of membrane for pure 
liquids. 

HOMOGENEOUS MEMBRANE 

The steady-state flow density j through a membrane of thickness I* and 
permeability K* under an applied pressure difference A p  = Po is usually de- 
scribed by Darcy's law (Fig. 1). 

This equation can be immediately derived from the chemical potential of 
the permeant 

p = po + pV - RT In c ( 2 )  

where V is the molar volume and c is the molar fraction. Inside the mem- 
brane, the permeant, is in equilibrium with outside liquid under the same 
macroscopic conditions, i.e., the same p and T.  Since the membrane can 
be considered as a component with infinitely large molecular weight, its 
molar fraction vanishes yielding unity, i.e., a constant value for the molar 

1 1 MEMBRANE 

Fig. 1. Pressure p and compacting pressure p ,  - p distribution in an ideal homogeneoils 
membrane with j +  (the current flows in the positive x-axis direction). 
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fraction of permeant inside the membrane. 
of the permeant in the membrane is 

Hence, the transport velocity 

21 = -(l/f)dp/dz* = -(V/f)dp/cZx* (3) 
where f is the molar friction coefficient of the permeant in the medium and 
x* is the location in the swollen membrane. The density of transport cur- 
rent) is the product of local concentration pH and velocity v, 

j = - (pVH/f)dp/dx* = - K*dp/dx* 

K* = (pVH/f)  = MH/f  

(4) 

(5) 

with tthe local permeability 

where p is density, the swelling (hydration) H is the volume fraction a t  x*, 
and M is molecular weight of the permeant. The main effect of H is not 
in the explicit factor as appearing in eq. (5 )  but in the drastic reduction of 
the friction coefficient f. Indeed, the value H/f  varies by many orders of 
magnitude from that of nearly dry membrane to  that of pure liquid if H 
goes from 0.01 to  1. 

K* e - A / H  

suggested by measurements of effective membrane Permeability of wat,er in 
a very wide hydration range.4 

Since in steady state j is constant, eq. (4) can be integrated throughout 
the membrane, yielding 

A rather good approximation is given by 

(54  

j = (l/Z*) 1 K*dp = (K*).po/Z* = K*po/Z*. (6) 

In  an ideal homogeneous membrane, the permeability K* of the membrane 
material is a constant independent of pressure and location x*. I n  any real 
membrane, however, the permeant swells and the pressure p ,  = po - p 
which the membrane has to  sustain (Fig. 1) compacts the material. The 
compacting pressure is maximum, and hence the swelling minimum at  the 
low pressure side of the membrane. As a consequence, under the condi- 
tions of the permeability experiment the membrane becomes inhomogeneous 
as far as composition (membrane and swelling permeant) and permeant mo- 
bility are concerned. 

The compacting pressure p ,  = p o  - p is based on the mechanical equilib- 
rium in the membrane. The applied pressure po at  x* = 0 has to be borne 
by the membrane support a t  x* = I*. The transmittal to  the support is 
effected by the membrane and by the local pressure of the permeant. That 
means that a t  any location x* the membrane is exposed to a compaction 
pressure po - p ,  which together with the permeant pressure p just adds up 
to the total transmitted pressure po. As a consequence the membrane is 
more compressed and the hydration more reduced at  the low than at  the 
high pressure side. This analysis is just the reversal of that by Bert4 who 
assumes that the compaction is caused by p ,  being hence maximum at  the 
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high and minimum at  the low pressure side of the membrane. Since he 
treats only membranes homogeneous in the dry state, his final results and 
the analysis of observable membrane permeability as function of applied 
pressure are not affected by his choice of p, = p as compared with ours, p, 
= po - p. One has merely to reverse the sign of the current in his Figure 1 
or the normalized position in his plots of hydration (Fig. 4) and flow conduc- 
tivity (Fig. 5). The integral in eq. (6) is, of course, independent of such a 
reversal. 

The mobility increases extremely rapidly with permeant volume concen- 
tration H .  On the other hand, H decreases with increasing p,. The con- 
stant permeability of the dry homogeneous membrane becomes in the swol- 
len state under the applied driving pressure po a function of p,(x*) or 
p(x*). Moreover, the membrane increases nonuniformly in thickness as a 
consequence of nonuniform swelling H ( p ) .  The observed permeability in 
eq. (1) is an average of K*[p(x*) J over the whole thickness of the membrane 
see eq. (6). It is not more a constant, but as a rule it decreases with PO 
as a consequence of increasing compaction with higher pressure. 

If one assumes that swelling does not change the lateral dimensions but 
only the thickness of the membrane, one has a local deformation 

dx* = dx/(l - H )  (7) 
where x and x* denote the location in the dry and swollen membrane, re- 
spectively. Hence, the equation for the current density in the volume ele- 
ment a t  x* of the swollen membrane, eq. (4), can be transcribed in coordi- 
nates of the dry membrane 

dp (8) 
dp dx dP j = -K*(P)- ~. = -K*(p)(l - H ) - -  = K(p)-- 
dx dx* dX dx 

with the local permeability 

K(P) = (1 - H)K*(P) (9) 

dependent exclusively on p. 
through p(x). 
membrane 

The dependence on x is not direct but merely 
The integration over x yields Darcy's law in t8erms of dry 

which is independent of the direction of pressure gradient. Therefore, a 
membrane homogeneous when dry even after inhomogeneous swelling 
caused by the gradient of compaction pressure p, = po - p does not acquire 
directionality. This result is trivial because one does not, expect a change 
in ( K )  by turning around a homogeneous membrane. 

VECTORIZED MEMBRANE 

The situation is different if the dry mepbrane has already a built-in 
longitudinal gradient of transport properties caused by a gradient of chemi- 
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cal composition and/or physical structure (crosslinking, crystallinity). In  
equilibrium with a liquid (water), such a membrane will swell (hydrate) 
more on one side than on the other. High swelling (hydration) means high 
local permeability and compressibility, but also a longer way to  travel for 
the permeant as a consequence of expansion in the x axis direction. One 
can expect that such a membrane will show a directionality, i.e., a difference 
in current j and hence in permeability K if the direction of the pressure dif- 
ference po is reversed. 

Let us consider a few simple model cases which demonstrate the effect of 
single parameters even if they do not correspond very closely to the situa- 
tion in actual membranes. In  all models, the local permeability K(x,p) 
already contains the correction factor (1 - H )  taking into account the 
membrane expansion by swelling as shown in eqs. (7)-(10). 

I. The membrane has a hydration gradient producing an increase of 
local permeability K with x, i.e., clK/dx > 0. There is no effect of pressure 
on K .  In  the simplest case, I< is a linear function of x, 

K(x) = Ko(1 + ax), (11) 

with no dependence on p .  
But the 

permeability is reduced at each location by the same function of compaction 
pressure, i.e., by a location independent function of p: 

11. The membrane has a permeability gradient as in model I. 

K = KOfl(X)fi(P). (12) 

Againfl(x) increases with x as with the first model. Since the compaction 
pressure decreases with p and the compaction decreases the permeability 
fi(p) is an increasing function of p but decreasing with po. A simple case of 
eq. (12) would be 

K(x,p) = KO0 + ax)/(I + P(P0 - P)) (13) 

containing only linear functions of x and p. 

ible function of x and p .  
such a case, containing only linear terms in x and p, can be written as 

111. The effect of hydration and compaction is described by an irreduc- 
The simplest expression for the permeability in 

with 

The permeabi1it)y and compressibility increase with x. 
The effect of hydration and compaction is described by an irreduc- 

ible function of x and p as in model 111, but the compressibility decreases 
IV. 
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I /  

Fig. 2. Schematic plot of local permeability K+ and K- as function of z for the four 
models of eqs. (II), (13), (14), and (16) (al = 2 and 6p0  = 1)  under the assumption 
that p is proportional to I - z( + ) or z( - ), respectively. This is correct for model I and 
the values at x = 0 and 2 for models I1 through IV. The correct data for model I1 are 
shown by broken line. Hence the correct data for models I11 and IV will be to the right 
of K+ and to the left of K- . 

with increasing x. 
x and p reads 

The simplest expression containing only linear terms in 

1 1 
1 - b p  

with 

KO’ = Ko/(l + Ppo) 

A schematic representation of K+ and K- for the four cases represented 
by eqs. (11), (13), (14), and (16) is given in Figure 2.  In  order to make the 
plotting simpler, one has chosen proportionalit,y between p and x or 1 - x. 
This is certainly not correct. Therefore the plots do not represent the ac- 
tual changes of K with x. But they pretty well inform about the trend of 
permeability changes in a swollen graded membrane. The differences be- 
tween the correct and simplified values are not very large, as can be con- 
cluded from the comparison of correct and simplified curves for model 11. 



PERMEARII,ITY OF VECTORIZED MEMBRANES 1499 

The integration of eq. (4) can be performed in all four model cases, eqs. 
One obtainsfor model I (ll), (13), (14), and (16). 

and, in the special case, 

. In (1 + al) 
~ K o  Po = a 

ffl 

In (1 + a1) (K(1)) = KO = Ko(1 + ~ 1 / 2  - ( ~ ~ 1 ) ~ / 1 2  + . . .) 
The permeability K(1) is independent of the value and direction of pressure 
difference. It increases with membrane thickness as a consequence of the 
assumed linear increase of K with x. 

A similar result is obtained for the second model (11) 

The permeability increases with 1 as in case I and decreases with po as a con- 
sequence of membrane compaction under applied driving pressure. But 
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there is no directionality. The current and the observed permeability 
K(Z,p,) are independent of the orientation of the membrane and pressure 
gradient. One can formulate the result quite generally that the swollen 
inhomogeneous membrane does not show any directionality in current if 
the actual local permeability K(x,p), including the swelling factor, eq. (9), 

I. 

I. 

0. 
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0. 

0. 

2.5 

Y- 

2 4 6 8 

Fig. 3. Plot of z(- = Ko/OZj+ of model 111 vs. 1 ~ +  = aKo/@Ij+I according to eq. (19) 
with the parameter u = 1 + @PO. The intersection with the straight line z = (KO/& 
yields y+ and y- corresponding to the average pressure gradient p0/1.  

can be represented as a product of a function of x by a function of p ,  i.e., 
if the differential equation for the current can be integrated by straight- 
forward separation of the coordinates p and x. 

In  most cases the differen- 
tial equation with a nonseparable K(x,p) has to be solved by numerical 
integration. In  the particularly simple case as represented by eq. (13), one 
obtains as intermediate solution of the differential equation 

The third model (111) is indeed irreducible. 

(21) 
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( b )  

Fig. 4. The currcmts j+ arid j- (a) arid the ratio j - / j+ (b) as function of PO for different 
values of a1 (model 111). 
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In  a plot of z versus y (Fig. 3), one obtains two curves z+ and z- for each u. 
By intersecting them with the straight line 2 = (Ko/al)y, one obtains the 
values y+ and y- corresponding to the membrane of thickness I a t  the ap- 
plied pressure po. From them, one derives j,, j-,  and the ratio j-/ j+ = 
y+/y-, plotted in Figure 4 as functions of u, i.e., of the inverse maximum 
membrane compaction factor. With a choice of @, the abscissa can be also 
read in po so that the curvesj(p) immediately yield the effective permeabil- 
ity of the membrane as function of applied pressure, 

plotted in Figure 5. As expected KLt decreases with increasing pressure as a 
consequence of membrane compaction. 

Since j-/j+ is larger than 1 for positive a one has the general conclusion 
that the permeability is enhanced if the driving pressure is applied to  the 
side of the membrane where the local hydration and hence the permeability 
js most reduced by compacting pressure, i.e., to the more compressible side 
of the swollen membrane. In  our model with positive a, this is also the side 
with higher swelling. This result agrees with the experimental data by 
Williams et al.,3 which shows a higher permeability with the pressure ap- 
plied at the higher quaternized side of the membrane. 

Negative a values reverse the situation, j+ > j-. Higher permeability is 
obtained if the pressure is applied to  the less compressible side. But one 
must not forget that negative a means an increase of permeability with 
compaction which does not seem a very realistic model. Therefore, this 
case was not included in Figures 3-5. 

Fig. 5. Effective permeability <K,(1, PO)> as function of p for different values of ul 
(model 111). 
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Fig. 6. The currentsj+ and j- (a) and the ratio j+ /j- (b) as function of p ,  for different 

values of al (model IV) .  

One is certainly interested in the case where the reduction of hydration 
One first obtains is similar to  that in case 111. 

(24) 
Pl - j +  = euU[Ei(-uuy) - Ei(-uy)] = l/z+ 
KO 
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with the definition of y+ and u from eq. ( 2 2 ) .  
integrals6 

Ei and L% are exponential 

Ei(-x)  = - Lrn Y d t  (25)  

e' Ei(x) = J- -dt .  
0.3725 t 

The currents j+  and j -  and the asymmetry j+/j-  are plotted in Figure 6 as 
functions of u and PO. 

The permeability of such a membrane is higher if the pressure is applied 
a t  x = 0, i.e., a t  the side of low hydration but high compressibility. To- 
gether with the results of model 111, one concludes that the decisive factor 
for membrane directionality is not the gradient of hydration but that of 
compressibility. The flux through the membrane is maximum if the pres- 
sure is applied at  the side with maximum compressibility. This is easy to 
understand because the compacting pressure is smallest a t  the pressure side 
and maximum at  the opposite side of the membrane. Hence the applied 
pressure compacts the membrane the least if the most compressible side of 
the membrane is exposed to po, i.e., p ,  = 0 and the least compressible side 
to p = 0 with p ,  = po. 

In  most membranes, high compressibility occurs a t  the side with high 
hydration (model 111) so that one has a good rule of thumb that the per- 
meability will be higher if the higher swollen side is exposed to  the applied 
pressure. But the example of model IV just demonstrates that one must be 
careful in predicting or expecting the higher flux on the basis of local hydra- 
tion only without paying attention to the compaction effect. 

The assumption of linear permeability increase with hydration strongly 
underestimates the effect of quaternization and compacting pressure. In  
the actual membranes the permeability is correlated with hydration, as 
shown in eq. (5a). Such an exponential dependence would significantly in- 
crease the asymmetry of the membrane, i.e., the valuesj-/j+ and (K-)/(K+) 
of Figures 4, 5, and 6 would show a much stronger dependence on pressure. 

CONCLUSIONS 

The four models calculated demonstrate two important aspects of inho- 
mogeneous membranes : 

Directionality of permeability exists only in the case where the de- 
pendence of local swelling and hence of permeability on pressure is a func- 
tion of location ( K  is an irreducible function of x and p ) .  

Higher permeability occurs in the flow direction with the high pres- 
sure applied to the membrane side with higher compressibility. 

These conclusions are quite general although they were mainly deduced 
from and demonstrated on very simple models, including merely linear func- 

1. 

2 .  
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tions of x and p .  Such a choice, dictated by mathematical expediency, does 
not limit the generality of conclusions. 
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